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Abstract 
In this report the aftershock sequence of the 2012 Sumatra earthquake is used to study the 

performance of subspace detectors (Harris, 2006) to detect and classify the events. The ground truth 

used for this study is 1222 aftershock solutions from the LLNL database drawn mostly from the 

Reviewed Event Bulletin (REB). Subspace detectors are built using several spawning strategies with 

waveforms recorded by the Makanchi Array (MKAR). 

Because we desire the subspace detectors to have a very low false alarm rate, the subspace templates 

are required to be about 50 seconds long (most of the P-bundle). For the same reason, the power 

detections used to create the subspace templates are restricted to have high SNR. Because of these 

restrictions, none of the subspace detectors are able to reproduce the entire ground truth catalog. They 

do have a very low false alarm rate, however, and so can reliably be used as single-array detection 

classifiers.  

Because of their reliability, in a suitably designed system, these detectors could be used to segregate 

detections from regions of high seismicity such as aftershock sequences, and allow processing of those 

detections in isolation from routine seismicity. It may also be possible to use these detectors to process 

groups of detections simultaneously. This leads to the concept of “analyst workload reduction factor”; a 

measure of the reduction in effort achieved by processing N detections in M groups instead of 

individually. If M is much smaller than N, a significant reduction factor is achieved. 

We use three subspace detector spawning strategies.  

1. In the first strategy, correlators are spawned directly from power detections and are allowed to 

run to the end of the sequence. Correlation clustered detections are then used to create multi-

rank subspace detectors which are run against the entire sequence. 

2. In the second strategy, power detectors are run for the entire duration of the sequence. Nearly 

the entire set of detections is used to create one or more subspace detectors with a high energy 

capture value. 

3. The final strategy attempted was to build subspace detectors as in (2) but restricted to only the 

first day’s detections.  

The second strategy was the most successful. Four subspace detectors produced 781 detections for the 

44-day period with at most a few false detections. Operationally, this system is not practical, but we 
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present a method for creating the detectors incrementally which we believe would maintain a high 

sensitivity with few false detections, while being able to provide detections without a delay for template 

creation. 

Introduction 
On April 11, 2012 a pair of large (M8.6, M8.2) strike-slip earthquakes occurred off the west coast of 

Northern Sumatra, Indonesia. The earthquakes were accompanied by a strong aftershock sequence with 

~1220 events recorded in a 44-day period following the first event of the sequence. Of these about 70 

were of magnitude 5 or greater. 

Earthquake sequences like this are a problem for monitoring agencies such as the International Data 

Center (IDC) because the high rate of activity can make it difficult for analysts to keep up with the 

evolving sequence. Consequently, there is considerable interest in developing processing techniques for 

detection and association that are more robust in these conditions. 

 Bobrov et al., 2012 have used cross correlation as an aid in analyzing aftershocks of this sequence. They 

processed 44 days of data from 7 IMS arrays using as templates, waveforms from 16 master events 

chosen to cover the spatial extent of the aftershock sequence. Their processing produced about 

1,000,000 cross correlation detections. Many of these detections were removed in a conflict resolution 

process so that in the end, they produced 4924 event hypotheses for the 44-day period. In all, 2763 new 

event hypotheses (relative to the SEL3) were created. 

In 2013, the IDC hosted a group of scientists from three US Department of Energy laboratories for a one-

week series of meetings to discuss correlation processing of aftershock sequences. During this meeting, 

the DOE scientists were briefed on the IDC’s correlation processing methodology as applied to the 

Sumatra sequence. The DOE scientists also agreed to research various aspects of this problem in hopes 

that the combined contributions might lead to further advances in applying correlation processing to 

earthquake monitoring. The representatives from Lawrence Livermore National Laboratory (LLNL) 

agreed to process this sequence using a subspace detection framework which they have been 

developing for several years. This report summarizes the results of that work. 

The Detection Framework  
The subspace detection framework used for this work was first described in Harris and Dodge, 2011. The 

system processes array data and acquires waveform templates with an STA/LTA detector operating 

on a beam directed at the P phases of the aftershock sequence. The templates are used to create 

correlation-type (subspace) detectors that sweep the subsequent data stream for occurrences of 

the same waveform pattern. Events are clustered by association with a particular detector.  

The assumption in developing this system was that in many (if not most) sequences a significant 

fraction of aftershocks cluster around asperities. If these clusters are spatially compact and have 

similar mechanisms, then it should be possible to use correlation to identify the clusters and use 
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that information to guide association and even to provide analysts with cluster-level views of the 

data. A pipeline that implements such a strategy could in principle be able to reduce analyst 

workload by (N-C)/N * 100% where N is the number of events in a sequence and C is the number of 

clusters. 

The first application of the framework was to process 10 days of aftershocks of the 2003 San 

Simeon earthquake recorded by the NVAR array approximately 390 km away from the source 

region. In that application, the detection framework operated in a 2-pass mode produced 676 

detections using 184 detectors. The theoretical workload reduction was nearly 73%. 

Since the initial implementation of the framework we have continued to develop the system under 

BAA funding (Kvaerna et al. 2011, 2012). In addition to a number of performance improvements, 

the system now includes fairly sophisticated screening mechanisms to prevent creation of 

templates from unwanted power detections. The system also includes the ability to create and use 

matched field detectors, to perform multiple passes over the data, and to perform detector 

maintenance automatically. 

The Data 
Following Bobrov et al., 2012, we analyzed 44 days of activity in a region extending in latitude from 

-1.5⁰ to 6⁰ and in longitude from 86⁰ to 96⁰. The LLNL database contained 1222 events for those 

constraints (1219 from the IDC REB and the remainder from the PDE daily bulletin). Figure 1 shows 

the distribution of events in the upper panel. The location of the main shock is marked with a red 

cross. These events serve as the ground truth for evaluating the performance of the detection 

framework.  We had initially hoped to use detections from station PSI (Parapat, Indonesia) as 

ground truth as it is only a few degrees from all the aftershocks. Unfortunately because of high 

background noise we did not get enough detections there to make it useful for that purpose.  

The lower panel of Figure 1 shows the event rate as a function of time. Note that by about the tenth 

day the rate of aftershock production has declined to the point where the utility of automated 

aftershock processing is becoming marginal. A system which has not helped with processing the 

events up to that point is probably not very useful as part of a processing pipeline. We make this 

point because, of the two most successful experiments with the detection framework, one required 

44 days’ worth of power detections to create its templates and one required a full day’s worth of 

power detections. However, we believe that by employing SVD updates to create the eventual high-

rank subspace templates, this time lag before the templates are useful could be eliminated. 
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Figure 1 (Upper) The 1222 events from the LLNL database in the source region for 44 days following the main shock. (Lower) 
Events per day for this dataset. Note that by day ten only a few tens of events are being produced in the source region. 

Our original intent was to run the detection framework on data from the same seven IMS arrays as was 

used by Bobrov et al, 2012. These are MKAR, WRA, CMAR, SONM, ASAR, ZALV, and GERES. In fact we did 

some processing on 5 of these arrays (ASAR, CMAR, GERES, MKAR, and SONM). Figure 2 shows 

detections as a function of time for these five arrays.   
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Figure 2 Subspace detections as a function of time for 5 IMS arrays for 44 days after the 2012 Sumatra main shock. 

Each configuration used in this test had four spawning detectors based on 4 events in the sequence that 

spanned the aftershock area. Each beam was configured for its array by performing an FK analysis. All 

subspace detectors used a threshold of 0.3. MKAR was the clear winner in this comparison. No other 

array outperformed MKAR on any day, and no other array detected any (catalog) event that was not 

also detected at MKAR.  

Although it is possible to build configurations for the detection framework that employ multiple arrays, 

the resulting templates tend to be quite long if the arrays are at very different distances from the source 

region. This impacts the performance because of the increase in length of the FFT’s that must be 

computed. In addition, such templates tend to contain a lot of noise because for each array it is 

necessary to include the time span where signal is expected at other arrays in the template. We are 

working on a solution to that problem, but for this study it would have been necessary to build long 

templates with very little signal. Given these considerations, we completed this study using only data 

from MKAR.  
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Choosing an Optimal Template Length 
Prior to running the framework on the MKAR data it was necessary to decide on a template length for 

the subspace detectors to be generated. Bobrov et al., 2012 used window lengths of 4.5s to 11s, but as 

previously remarked, their system produced a large number of false detections that had to be removed 

by post-processing of the data. The detection framework is meant to be operated in such a way that few 

or no false detections are produced. Therefore, one must ensure that a sufficiently great time-

bandwidth-product is achieved. 

 

Figure 3 Example detections made using a 5-second long template. Note the wide disparity in the P-coda despite the 
similarity of the data in the template window. 

 

Figure 3 above shows a few signals recorded at MKAR and correlated using 5-second windows in the 1-

3Hz band. These short windows capture only a few cycles of the P-wave. Although within the window, 

the signals are similar, there is a wide variation in the rest of the signal. This is not just a matter of 

interfering signal. For example signals 2, 6, 8, and 11 all have high SNR, yet the coda are quite different. 

These events are unlikely to be similar in both position and mechanism. It is clear that longer windows 

are required to avoid misclassifying these signals.  However, the longer the window, the greater the 

probability of the signals becoming de-correlated because of interfering signals.  
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To determine an optimal length we analyzed a set of 419 power detections at MKAR. This analysis 

assumes that the P-coda is mostly composed of scattered energy from the events being measured, and 

that there must be a window length beyond which little additional information about the Green’s 

function and source is present. Using windows longer than that will increase the risk of contaminating 

the signal while providing little improvement in the information content.  

Table 1 Largest cluster size as a function of window length and cluster threshold. 

Window length (s) 5 10 20 30 40 50 60 70 80 

Cluster size at .6 208 112 43 26 16 6 4 3 6 

Cluster size at .7 125 29 7 4 3 3 3 3 3 

Cluster size at .8 29 8 3 3 3 3 3 3 3 

 

For nine different window lengths we cross correlated and clustered the waveforms using (squared CC) 

thresholds of 0.6, 0.7, and 0.8.  The metric used was the size of the largest cluster. The results are shown 

in Table 1 and in Figure 4. 

 

Figure 4 Largest cluster size as a function of window length and cluster threshold shown graphically. 
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Evidently, at the higher thresholds, a window length of 20s – 30s appears to be long enough to avoid 

spurious correlations, but at a threshold of 0.6 (.77) about 50 seconds is required. Because we seek to 

maximize the number of correlation detections, we must use a low threshold, and so choose the length 

of 50s. 

Determination of Screening Parameters 
After deciding on a template length to use at MKAR we performed a series of runs to investigate how 

the framework performs on teleseismic data. (Previously, we have only analyzed regional data.) These 

runs also were used to establish the screens that are applied to power detections before they are used 

to create templates.  This screening of detections is very important in order to avoid creation of 

templates that are sensitive both to the intended signal and to unwanted signal or noise. 

Four power detectors were used as spawners for these experiments. The detector beam parameters 

were chosen by selecting 4 aftershocks from the LLNL catalog whose positions spanned the sequence 

and obtaining the azimuth and velocity at MKAR for these events by FK analysis. These are shown in 

Table 2. 

Table 2 The beam parameters for four power detectors used for spawning of correlators. 

LLNL EVID Back Azimuth Velocity Detectorid 

6818030 166.6 11.8 10419 

6872645 172.3 13.1 10420 

6899681 163.3 13.1 10421 

6900130 163.3 11.9 10422 

To establish the bounds for FK screening, we performed a run of the framework with the configuration 

set to only write out power detections and with no screening of triggers by FK. The upper-left panel of 

Figure 5 shows the FK results for those detections. Despite the beam-forming being used by the power 

detectors, there are numerous detections from all azimuths and a wide range of velocities.  By 

identifying which detections were in the catalog, we were able to determine that bounds of ± 15° in 

azimuth and ± 1.k km/s were appropriate. 

After determining the appropriate bounds and removing detections that did not meet the screening 

criteria, we created 18 subspace detectors from clusters of similar detections. These detectors plus 

correlators produced by the framework were run at 5 different threshold levels to see how detection 

performance behaved as the thresholds were decreased. The results are shown in Table 3 below. 

Table 3 Detection and detector counts for the five framework runs. 

Run ID Threshold Total Detections Contributing Detectors Workload reduction 

101 0.5  (.707) 998 918 8% 

103 0.4  (.632) 1179 1041 12% 

104 0.3  (.548) 1284 1020 21% 

105 0.2  (.447) 1691 970 43% 

106 0.1  (.316) 5276 940 82% 
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Figure 5 FK results for the power detections and for the correlators at 5 values of T. Upper left panel shows results for the 
power detector. Note the large numbers of side-lobe detections. 
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Note that although the framework has succeeded in producing more detections in every run than could 

be found using a power detector, in every case, about 1000 detectors are required. In other words, very 

few of the correlators are detecting anything other than their template event. The signal on which their 

template is based is unique. 

 Not surprisingly, the detection count increases with decreasing threshold. However, below a threshold 

value of 0.3 the detection counts appear to be suspiciously high. To investigate, we extracted the FK 

results for all the detections. They are plotted in Figure 5 along with the FK results from the power 

detector. Evidently, there are a large number of false detections. Even at T = 0.5, some of the detections 

have slowness that diverges greatly from that of their pattern event. At T = 0.1 performance is abysmal. 

Most of the detections appear to be false. 

Our first thought was that the multi-rank subspace detectors were adapting themselves to data in such a 

way as to detect signals with very different slowness values. We extracted the detection counts (filtered 

by FK and unfiltered) by detector and show some selected values in Table 4. The fraction column reports 

the fraction of total detections that also passed the FK screen. The multi-rank detectors did as well as or 

better than the rank 1 detectors in detecting signals with the correct slowness. 

Table 4 Selected detectors with their detection counts from run 106. Both the unfiltered and filtered counts are shown as 
well as the ratio of filtered to unfiltered. Multi-rank detectors are shown with yellow shading. The two worst-performing 
detectors are shown with red shading. 

Detectorid Unfiltered count Filtered count Fraction 

6029 1545 914 0.591 

6803 715 10 0.014 

5977 639 1 0.001 

5951 183 117 0.639 

6823 162 42 0.259 

6123 110 78 0.709 

6667 103 17 0.165 

6465 95 2 0.021 

5961 88 43 0.489 

6727 64 25 0.391 

6351 54 2 0.037 

5966 46 33 0.717 

6314 35 33 0.943 

Table 4 also shows some detectors that performed extremely poorly. For example only about 1% of the 

detections from detector 6803 met the FK screen. Detector 5977 was even worse with only about 0.1% 

passing the screen. 

We extracted the templates for detectors 6029, 6803, and 5977, and have plotted channel MK01 for 

each of these templates in Figure 6. Clearly, an important contributor to the large number of false 

detections in run 106 was the creation of templates from power detections with low SNR. The top two 

templates in Figure 6 have SNR of 1.9 and 2.9 respectively, and between them contributed 1343 of the 

3056 detections that failed the FK screen in run 106. By contrast detector 6029 (SNR = 90) had 59% of its 

detections pass the FK screen.
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Figure 6 Channel MK01 from three templates arranged in order of increasing SNR. The top two built large numbers of bogus 
detections, while the bottom one with SNR = 90 performed fairly well at T = 0.1. 
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Subspace Detections From Correlation-derived Clusters 
With screening parameters determined, we were ready to see how well the framework could do in 

reproducing and extending the catalog of detections using our technique of building subspace detectors 

from correlation-derived clusters. The process proceeds in 3 steps: 

1. Run the framework in the mode that produces correlation detectors from power detections. 

2. Build multi-rank subspace detectors from the detections of the best-performing correlators. 

3. Run the framework with the subspace detectors in place. 

Step 1 produced 366 detections and generated 209 detectors. The top 10 detectors had 131 detections 

among them as shown in Table 5. 

Table 5 The top ten performing detectors from first run of the framework using automatic spawning of correlators and a 
screening threshold of 5.0. 

Detectorid Detection Count 

11156 32 

11258 24 

11150 20 

11164 16 

11149 9 

11210 7 

11253 6 

11218 6 

11159 6 

11225 5 

 

Using detections of the top seven detectors, we created the multi-rank subspace detectors shown in 

Table 6. Running with this augmented suite of detectors (209 correlators and 7 subspace detectors) the 

framework produced 480 detections using 215 detectors. Table 6 lists the seven subspace detectors 

along with their rank and the number of detections they produced at the 0.3 threshold. 

Table 6 Multi-rank subspace detectors created from detections from first run of the framework. 

SS Detectorid Source Detectorid Rank Detections in follow up run 

11356 11156 18 129 

11357 11258 5 20 

11358 11150 7 29 

11359 11164 11 43 

11360 11149 5 11 

11361 11210 4 6 

11362 11253 4 7 
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How well Did we Do? 
Figure 7 shows the detections produced by the second run of the framework. The white filled circles 

show the event locations from the bulletin. The blue circles represent detections by correlators, and the 

red circles represent detections from multi-rank subspace detectors. The pattern detectors were 

effective mostly in the center part of the sequence where the power detectors had most of their 

detections. The pattern detectors out-performed the power detectors by 31% but only detected 39% of 

the events in the catalog. 

From the standpoint of being a highly-sensitive detector, this configuration was greatly outperformed by 

the system described by Bobrov et al, 2012. Recall that their system produced 4924 event hypotheses 

(approximately 4 times the number of events in our catalog and more than 10 times the number of 

produced by the framework). However, their system works by producing very large numbers of 

detections at many arrays, a large number of which must be removed by statistical analysis.  

 

Figure 7 (White) Events from bulletin. (Blue) Correlation Detections. (Red) Subspace Detections. 

In contrast, the pattern detectors presented here use data recorded at a single array to produce a set of 

detections that can be reliably assigned to a very compact source region. As part of a tool chain that 

allows groups of detections to be processed together there is the potential for significantly easing 

system load during an intense aftershock sequence. At a minimum the system could de-queue 

detections known to be from an aftershock sequence so that events from other parts of the world could 

be processed in a timely manner. More sophisticated strategies could be developed to allow joint 

processing of groups of aftershocks. 
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Given 480 detections using 215 detectors, this run demonstrates a potential analyst workload reduction 

of 55%. These results are not as good as what we achieved with the San Simeon sequence (73%).  But, 

considering just the subspace detectors, performance is much better. There were 245 detections by 

7 subspace detectors yielding a workload reduction of 97%. The limitation of the multi-rank 

subspace detectors is the small size of their footprint. In the next section, we present a way to 

substantially increase the size of the footprint. 

Increasing the Footprint Using Very High-Rank Subspace Detectors 
The subspace detectors used in the previous section were built using waveforms from events that had 

been clustered by correlation. In other words, the basis seismograms for these subspace detectors is 

from a spatial region small enough that the seismograms were correlated with one another at least at 

the 0.3 level. So it is not surprising that the clusters produced by these detectors are spatially compact 

as well. We expect that these detectors can be used to find additional events from within their basis 

region, and they do. But we are unable to produce by correlation a small set of clusters that spans the 

entire aftershock region for the sequence under study.  

However, there is no reason that the basis used to form a subspace detector has to be chosen by 

correlation. As pointed out by Harris (2006) subspace detectors can span the range between pure 

correlators (rank 1) and energy detectors (rank equal to the signal space). By forming detectors that use 

more of the signal space in their basis, we can increase the footprint at the expense of an increase in the 

false alarm rate. 

This approach has been advocated by Harley Benz of the US National Earthquake Information Center 

where they are having success with an experimental system that employs subspace detectors formed 

using all power detections from a certain source region. Encouraged by Harley’s reports, we decided to 

try the same approach with the Sumatra sequence. 

We started with the set of power detectors shown in Table 2 and ran the framework for the 44 days 

following the main shock. Although we retained the FK screen and duration screen used in the previous 

section, we lowered the detection threshold from 5 to 0.5. This adjustment was motivated by a desire to 

increase the size of the basis used to construct subspace detectors.  

This configuration produced 3953 detections that passed the FK and duration screens. However, 

inspection of the detections showed a number with very low SNR. Concerned about the effect these 

signals might have on the false alarm rate of the subspace detectors, we applied an additional SNR 

screen passing only those detections with SNR >= 3.0. This left the 485 power detections illustrated in 

Figure 8. 

Only about 40% of the catalog events are included in the power detections. Also, the power detections 

do not span the area covered by catalog events. As will be seen, this limits the footprint of the subspace 

detectors. 
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Figure 8 Power detections at MKAR (blue) plotted on top of the catalog locations (white). There are 1222 catalog events and 
485 detections associated by time to catalog events. For the most part, the power detections are concentrated in the central 
part of the sequence. 

For each of the four detectors, we extracted waveforms for all detections and used them to build 

subspace detectors using a template length of 50 seconds and an energy capture of 0.9. Table 7 lists the 

four detectors created this way along with their rank. 

Table 7 Array Power Detections and Resulting subspace detectors. 

Power Detectorid Count SS Detectorid SS Detector Rank 

10419 209 10426 115 

10420 92 10425 78 

10421 83 10424 71 

10422 97 10423 56 
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Figure 9 Detections for the 44-day period made using high-rank subspace detectors. (Left) Associated detections (blue) 
plotted on catalog events (white). (Right) Associated detections plotted on power detections (white).  

Figure 9 shows the results obtained running the four high-rank subspace detectors against the 44 days 

of data. There were 781 subspace detections produced, 629 of which were associated to catalog events 

by time. In terms of absolute numbers of detections, this is a substantial (63%) improvement over our 

previous attempt using correlation-derived templates. Comparing Figure 9 (Left) to Figure 7 It seems 

that although most of the detections are still restricted to the central part of the sequence, within that 

region, there are significantly fewer missed detections (relative to the catalog) than was the case with 

the previous detector. Specifically, within a 4° by 4° box centered on lat = 2°, lon = 92° the catalog 

contains 889 events while these detectors produced 567 associated detections (63%).  

Where this configuration really shines, however, is in the analyst workload reduction factor. Assuming 

that detections can be dismissed or at least have their processing done as part of a group once the 

proper group has been determined, these detectors achieved a workload reduction of 99% [(781-4)/ 781 

*100%]. 

False Detections 
The high-rank subspace detectors produced 152 detections that could not be matched to catalog events, 

and it is natural to wonder how many of those detections are false. All of the detections passed the FK 

screen with a minimum FK quality of 0.6, so we can at least say that there was coherent energy at the 

right slowness to be from the source region of the Sumatra aftershocks. However, for 28 of the 

detections, visual inspection of a single channel filtered into the frequency band of the detectors, did 

not reveal any obvious P-arrival. Some of those could be false detections. 

We also ran the detectors over ten days of data prior to the main shock. This resulted in 12 detections. 

Five of those detections could be associated by time to events in the LLNL catalog with epicenters in the 
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aftershock zone. The remainder, although unassociated, are real events with appropriate slowness and 

good SNR. Figure 10 shows the detections on the MK01 channel. 

 

Figure 10 All detections (shown on MK01) from the 10 days preceding the main shock. The traces in red are for detections 
with times that associate with events in LLNL database. The associated events are in the aftershock zone. 

The high-rank subspace detectors presented in this section have good performance, particularly at 

classification but have the disadvantage of having required the entire suite of power detections for the 

44-day period in order to create the templates. It is no help to get these detectors only after the 

sequence has been fully processed. However, there exists a way to create the subspace basis 

incrementally, and although it has not been implemented for this report, it may perform comparably to 

(or possibly better than) the detectors just discussed. 

Subspace templates are constructed by building a matrix whose columns are the basis waveforms, 

performing a Singular Value Decomposition (SVD), and retaining a subset of singular vectors as the 

template. However it is also possible to build up a SVD by adding a column at a time to the basis and 

performing a SVD update (Bunch and Nielsen, 1978) with each addition. Under this strategy, the first 

screened power detection would be used to form a correlator, and with each successive detection by 

either the power detector or the evolving subspace detector, the template would be updated. Initially, 

the analyst workload reduction factor would be 0. But, with each additional detection, the factor would 

increase. Because the template would include both power detections and subspace detections, it might 

turn out to be a more sensitive detector than one constructed using only power detections. 
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High-Rank Subspace Detectors Formed with a Subset of the Power 

Detections 
An alternative strategy for bringing a high-rank subspace detector into service early in the sequence is to 

use as a basis only those events that occur early in the sequence. In this section we describe the 

performance of such a detector and compare it to the detector created using 44-days of detections. 

The detectors described here were created using only detections from the first day of the sequence. Ten 

spawning detectors were used and ten subspace detectors were created from their detections. The 

intent in using a large number of spawners distributed around the aftershock zone was to minimize the 

footprint of each subspace detector.   

Table 8 shows the statistics for the 10 spawning detectors including their detection counts. Note that 4 

of the detectors had fewer than 10 detections at the end of the first day. In retrospect, those should 

probably have been discarded, but we used them anyway. The detectors that resulted from them were 

low-rank and contributed very little to the overall total. 

Table 8 Statistics for the 10 spawning detectors including their detection counts after one day. 

LLNL EVID Lat Lon Mw detectorid Azimuth Slowness Detection count 

6818018 1.5255 90.8811 6.06 10428 170.4 12.7 10 

6818058 2.9313 89.5575 6.58 10427 170.7 12.3 4 

6818086 3.2731 93.8179 5.14 10429 165.8 13.3 2 

6818087 2.3937 93.451 5.25 10430 163.3 12.4 15 

6818114 3.6929 92.7048 5.4 10431 167.2 13.3 10 

6818166 4.372 92.7539 5.37 10432 162.8 13.6 19 

6818171 1.2826 91.8917 5.37 10433 170.6 11.9 33 

6818213 2.4692 92.7499 5.11 10434 166.8 12.4 3 

6872788 1.8497 92.9442 5.51 10435 167.7 11.9 19 

6986914 2.2752 91.7426 4.75 14036 167.4 12.7 3 

 

Figure 11 (Left) shows the first-day detections from the 10 spawning detectors in blue and the events 

from the catalog for the entire 44-day period in white.  The locations of the events on which the 

spawners were based are shown in red. The main point of this plot is to show that by the end of the first 

day the sequence was still rather compact, so the spawning detectors and their detections only sample 

the central part of the sequence. 
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Figure 11 (Left) Red triangles are events used to create power detectors. Blue circles are 1-day power detections and white 
circles are catalog events. (Right) Yellow circles are subspace detections that match those of the spawning detectors. Blue 
circles are the additional detections over the 44-day period. 

Figure 11(Right) shows the 532 subspace detections for the 44-day period (blue) atop the 4-detector 

power detections (white). The yellow circles are the detections in common between the 10 power 

detectors and the subspace detectors. The footprint of the 10 subspace detectors is larger than the area 

covered by the basis events, but still does not come close to covering the entire aftershock zone.   

Compared to the high-rank subspace detectors of the previous section this configuration produced 68% 

as many detections.  All but 92 of the 4-detector power detections shown in Figure 8 were reproduced. 

There were also an additional 88 detections. Under the assumptions used throughout this report, the 

analyst workload reduction factor for this set of detectors is 98% ((532-10)/532 *100%). From that 

standpoint, this set of detectors is very successful. Although there would have been a day’s delay while 

the basis was being formed, for the rest of the sequence, about 43% of the events would have been 

detected and correctly classified by this system. 

In this section we have shown that a high-rank subspace detector can be created that has a footprint 

larger than the domain of its basis detections and that can detect many events within its footprint that 

are not part of its basis. As part of a system designed to exploit these kinds of detections, it could 

provide a significant reduction in analyst workload. However, because the subspace templates do not 

evolve, the configuration is not able to track a sequence that migrates away from the region that was 

active during the period of basis formation. 
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Conclusions 
We have presented three methods for creating suites of multi-rank subspace detectors and have applied 

them to the 2012 Sumatra earthquake sequence. In the first strategy, correlators are spawned directly 

from power detections and are allowed to run to the end of the sequence. Correlation clustered 

detections are then used to create multi-rank subspace detectors which are run against the entire 

sequence. In the second strategy, power detectors are run for the entire duration of the sequence. 

Nearly the entire set of power detections is used to create one or more subspace detectors with a high 

energy capture value. The final strategy was to build subspace detectors directly from un-clustered 

power detections, but restricted to only the first day’s detections.  

All three strategies required the detections from the power detectors to be filtered by slowness and by 

SNR.  We also required the subspace templates to be 50 seconds or more in length. Without these 

restrictions, significant numbers of false detections could be produced by the subspace detectors as the 

detection threshold was decreased. 

None of the detectors presented here are as sensitive as the system presented by Bobrov et al, 2012, 

and none could be directly plugged into the existing pipeline at the IDC. However, we think that 

detectors with the ability to reliably detect and classify a large number of events using data recorded by 

a single array could play an important role in future pipeline systems. They could allow much more 

robust association of detections during times of high seismicity, and could potentially provide a basis for 

processing data in groups, thus improving efficiency. 
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